题目内容
设球O的半径为1,A、B、C是球面上的三点,若A到B、C两点球面距离都是
,且二面角B-OA-C的大小为
,则三棱锥O-ABC的体积为
- A.

- B.

- C.

- D.

D
分析:根据A到B、C两点球面距离都是
,且二面角B-OA-C的大小为
,可得AO⊥平面OBC,∠BOC=
,从而可求三棱锥O-ABC的体积.
解答:
解:如图,∵A到B、C两点球面距离都是
,且二面角B-OA-C的大小为
,
∴AO⊥平面OBC,∠BOC=
∴三棱锥O-ABC的体积为
=
故选D.
点评:本题考查球面距离,考查三棱锥体积的计算,属于中档题,
分析:根据A到B、C两点球面距离都是
解答:
∴AO⊥平面OBC,∠BOC=
∴三棱锥O-ABC的体积为
故选D.
点评:本题考查球面距离,考查三棱锥体积的计算,属于中档题,
练习册系列答案
相关题目