题目内容

若函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解为
 
分析:根据绝对值的代数意义,去掉函数f(x)=|2x+1|-|x-4|中的绝对值符号,求解不等式f(x)>2即可.
解答:解:f(x)=
-x-5(x<-
1
2
)
3x-3(-
1
2
≤x≤4)
x+5(x>4)

(1)①由
-x-5>2
x<-
1
2
,解得x<-7;
3x-3>2
-
1
2
≤x≤4
,解得
5
3
<x≤4;
x+5>2
x>4
,解得x>4;
综上可知不等式的解集为{x|x<-7或x>
5
3
}.
故答案为:(-∞,-7)∪(
5
3
,+∞).
点评:考查了绝对值的代数意义,去绝对值体现了分类讨论的数学思想,解答的关键是运用分类讨论去掉绝对值后转化成整式不等式.属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网