题目内容
(2012•泉州模拟)设f(x)=
,其中a为正实数.
(1)当a=
时,求f(x)的极值点;
(2)若f(x)为[
,
]上的单调函数,求a的取值范围.
| ex |
| 1+ax2 |
(1)当a=
| 4 |
| 3 |
(2)若f(x)为[
| 1 |
| 2 |
| 3 |
| 2 |
分析:(1)把a=
代入f(x)=
,对f(x)进行求导,令f′(x)=0,解出其极值点;
(2)已知f(x)上的为单调函数,可知f′(x)在[
,
]恒大于等于0,或恒小于等于0,利用求出a的取值范围.
| 4 |
| 3 |
| ex |
| 1+ax2 |
(2)已知f(x)上的为单调函数,可知f′(x)在[
| 1 |
| 2 |
| 3 |
| 2 |
解答:解:∵f′(x)=
,
(1)当a=
时,若f'(x)=0,
则4x2-8x+3=0⇒x1=
, x2=
,
∴x1=
是极大值点,x2=
是极小值点;
(2)记g(x)=ax2-2ax+1,则g(x)=a(x-1)2+(1-a),
∵f(x)为[
,
]上的单调函数,
则f'(x)在[
,
]上不变号,
∵
>0,
∴g(x)≥0或g(x)≤0对x∈[
,
]恒成立,
由g(1)≥0或g(
)≤0⇒0<a≤1或a≥
,
∴a的取值范围是0<a≤1或a≥
.
| (ax2-2ax+1)ex |
| (1+ax2)2 |
(1)当a=
| 4 |
| 3 |
则4x2-8x+3=0⇒x1=
| 1 |
| 2 |
| 3 |
| 2 |
| x | (-∞,
|
|
(
|
|
(
| ||||||||||||
| f'(x) | + | 0 | - | 0 | + | ||||||||||||
| f(x) | 递增 | 极大值 | 递减 | 极小值 | 递增 |
| 1 |
| 2 |
| 3 |
| 2 |
(2)记g(x)=ax2-2ax+1,则g(x)=a(x-1)2+(1-a),
∵f(x)为[
| 1 |
| 2 |
| 3 |
| 2 |
则f'(x)在[
| 1 |
| 2 |
| 3 |
| 2 |
∵
| ex |
| (1+ax2)2 |
∴g(x)≥0或g(x)≤0对x∈[
| 1 |
| 2 |
| 3 |
| 2 |
由g(1)≥0或g(
| 1 |
| 2 |
| 4 |
| 3 |
∴a的取值范围是0<a≤1或a≥
| 4 |
| 3 |
点评:此题主要考查利用导数求函数的单调性,解此题的关键是对f(x)能够正确求导,利用了转化的思想,是一道中档题;
练习册系列答案
相关题目