题目内容
已知等差数列{an}满足a2=0,a6+a8=-10,Sn为{an}的前n项和.
(Ⅰ)若Sn=-4850,求n;
(Ⅱ)求数列{
}的前n项和Tn.
(Ⅰ)若Sn=-4850,求n;
(Ⅱ)求数列{
| an |
| 2n |
(I)由已知2a7=a6+a8=-10得a7=-5,
所以公差d=
=
=-1,
∴a1=a2-d=1,
∴-4850=n-
,解得n=100;
(II)由(I)知an=1+(n-1)(-1)=2-n,
=
∴Tn=1•
-0•
-1•
+…+(2-n)•
(1)
Tn=1•
-0•
-1•
+…+(2-n)•
(2)
(2)-(1)得:-
Tn=-
+
+
+
+…+
+(2-n)•
=-1+
+
+
+…+
+(2-n)•
=-1+
+(2-n)•
=-1+1-
+(2-n)•
=-n•
∴Tn=
所以公差d=
| a7-a2 |
| 7-2 |
| -5-0 |
| 5 |
∴a1=a2-d=1,
∴-4850=n-
| n(n-1) |
| 2 |
(II)由(I)知an=1+(n-1)(-1)=2-n,
| an |
| 2n |
| 2-n |
| 2n |
∴Tn=1•
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
(2)-(1)得:-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 16 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
=-1+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
=-1+
| ||||
1-
|
| 1 |
| 2n+1 |
=-1+1-
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
∴Tn=
| n |
| 2n |
练习册系列答案
相关题目