题目内容

已知方程(x-a)2+(y-b)2=36的曲线经过点O(0,0)和点A(0,-12),求ab的值.

解:∵点OA都在方程(x-a)2+(y-b)2=36表示的曲线上,∴点OA的坐标都是方程(x-a)2+?(y-b)2?=36的解.

解得

a=0,b=-6为所求.

启示:若点在曲线上,则点的坐标满足曲线的方程.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网