题目内容
已知命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,命题q:函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.
答案:
解析:
解析:
|
解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,所以函数g(x)的图象开口向上且与x轴没有交点,故△=4a2-16<0,∴-2<a<2.又∵函数f(x)=(3-2a)x是增函数,∴3-2a>1,∴a<1. 又由于p或q为真,p且q为假,可知p和q一真一假. (1)若p真q假,则 (2)若p假q真,则 综上可知,所求实数a的取值范围为1≤a<2,或a≤-2. |
练习册系列答案
相关题目
已知命题p:“关于x的方程x2-ax+a=0无实根”和命题q:“函数f(x)=x2-ax+a在区间[-1,+∞)上单调.如果命题p∨q是假命题,那么,实数a的取值范围是( )
| A、(0,4) | B、(-∞,2]∪(0,4) | C、(-2,0]∪[4,+∞) | D、[-2,0)∪(4,+∞) |