搜索
题目内容
若实数x,y满足不等式组
x≥0
y≥0
2x+3y≤6
3x+2y≤6
,则z=x+y的最大值为______.
试题答案
相关练习册答案
先根据约束条件画出可行域,
设z=x+y,
∵直线z=x+y过可行域内点A(
6
5
,
6
5
)时
z最大,最大值为
12
5
,
故选A.
练习册系列答案
赢在课堂中考先锋总复习卷系列答案
中考风向标全国中考试题精析系列答案
宏翔教育中考金牌中考总复习系列答案
赢在中考3年中考2年模拟系列答案
宏翔文化中考亮剑系列答案
5年中考江苏13大市中考真题历年回顾精选28套卷系列答案
薪火文化假期百分百系列答案
定位中考三步定位核心大考卷系列答案
中考备战非常领跑金卷系列答案
考易通系列全国中考试题精选系列答案
相关题目
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
f(
x
1
)-f(
x
2
)
x
1
-
x
2
<0
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
y
x
的取值范围为
[-
1
2
,1]
[-
1
2
,1]
.
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
的取值范围为
.
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
的取值范围为
.
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
的取值范围为
.
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
的取值范围为
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案