ÌâÄ¿ÄÚÈÝ
Èçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡£¬Pn£¨xn£¬yn£©£¬¡ÊÇÇúÏߣ¨1£©Ð´³öan-1¡¢anºÍxnÖ®¼äµÄµÈÁ¿¹ØÏµ£¬ÒÔ¼°an-1¡¢anºÍynÖ®¼äµÄµÈÁ¿¹ØÏµ£»
£¨2£©²Â²â²¢Ö¤Ã÷ÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éè
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÒÀÌâÒâÀûÓõÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʿɵã¬
£¬
£®
£¨2£©ÓÉ
µÃ
=
£¬¼´
£¬²Â²â
£¬
ÔÙÓÃÊýѧ¹éÄÉ·¨½øÐÐÖ¤Ã÷£®
£¨3£©ÓÃÁÑÏî·¨ÇóµÃ
µÄֵΪ
£¬Óɺ¯Êý
ÔÚÇø¼ä
[1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇÒ
£¬ÇóµÃ
£¬ÔÙÓÉ A={x|x2-2ax+a2-1£¼0£¬a¡ÊR}=
{x|x¡Ê£¨a-1£¬a+1£©}£¬A¡ÉB=¦Õ£¬ÓÐa+1¡Ü0£¬»ò
£¬ÓÉ´ËÇóµÃʵ³£ÊýaµÄȡֵ·¶Î§£®
½â´ð£º½â£º£¨1£©ÒÀÌâÒâÀûÓõÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʿɵã¬
£¬
£®¡£¨4·Ö£©
£¨2£©ÓÉ
µÃ
=
£¬
¼´
£¬²Â²â
£® ¡£¨2·Ö£©
Ö¤Ã÷£º¢Ùµ±n=1ʱ£¬¿ÉÇóµÃ
£¬ÃüÌâ³ÉÁ¢£® ¡£¨1·Ö£©
¢Ú¼ÙÉèµ±n=kʱ£¬ÃüÌâ³ÉÁ¢£¬¼´ÓÐ
£¬¡£¨1·Ö£©
Ôòµ±n=k+1ʱ£¬ÓɹéÄɼÙÉè¼°
£¬
µÃ
£¬
¼´
½âµÃ
£¬£¨
²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
¼´µ±n=k+1ʱ£¬ÃüÌâ³ÉÁ¢£® ¡£¨3·Ö£©
×ÛÉÏËùÊö£¬¶ÔËùÓÐn¡ÊN*£¬
£® ¡£¨1·Ö£©
£¨3£©
=
=
£®¡£¨2·Ö£©
ÒòΪº¯Êý
ÔÚÇø¼ä[1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇÒ
£¬
ËùÒÔ
£®¡£¨2·Ö£©
A={x|x2-2ax+a2-1£¼0£¬a¡ÊR}={x|x¡Ê£¨a-1£¬a+1£©}
ÓÉA¡ÉB=¦Õ£¬ÓÐa+1¡Ü0£¬»ò
£¬
¹Ê£¬
£¬¼´ ʵ³£ÊýaµÄȡֵ·¶Î§Îª
£®¡£¨2·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÊýѧ¹éÄÉ·¨µÄÓ¦Óã¬ÓÃÁÑÏî·¨¶ÔÊýÁÐÇóºÍ£¬Á½¸ö¼¯ºÏµÄ½»¼¯µÄ¶¨ÒåµÄÓ¦Óã¬ÊôÓÚÄÑÌ⣮
£¨2£©ÓÉ
ÔÙÓÃÊýѧ¹éÄÉ·¨½øÐÐÖ¤Ã÷£®
£¨3£©ÓÃÁÑÏî·¨ÇóµÃ
[1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇÒ
{x|x¡Ê£¨a-1£¬a+1£©}£¬A¡ÉB=¦Õ£¬ÓÐa+1¡Ü0£¬»ò
½â´ð£º½â£º£¨1£©ÒÀÌâÒâÀûÓõÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʿɵã¬
£¨2£©ÓÉ
¼´
Ö¤Ã÷£º¢Ùµ±n=1ʱ£¬¿ÉÇóµÃ
¢Ú¼ÙÉèµ±n=kʱ£¬ÃüÌâ³ÉÁ¢£¬¼´ÓÐ
Ôòµ±n=k+1ʱ£¬ÓɹéÄɼÙÉè¼°
µÃ
¼´
½âµÃ
¼´µ±n=k+1ʱ£¬ÃüÌâ³ÉÁ¢£® ¡£¨3·Ö£©
×ÛÉÏËùÊö£¬¶ÔËùÓÐn¡ÊN*£¬
£¨3£©
ÒòΪº¯Êý
ËùÒÔ
A={x|x2-2ax+a2-1£¼0£¬a¡ÊR}={x|x¡Ê£¨a-1£¬a+1£©}
ÓÉA¡ÉB=¦Õ£¬ÓÐa+1¡Ü0£¬»ò
¹Ê£¬
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÊýѧ¹éÄÉ·¨µÄÓ¦Óã¬ÓÃÁÑÏî·¨¶ÔÊýÁÐÇóºÍ£¬Á½¸ö¼¯ºÏµÄ½»¼¯µÄ¶¨ÒåµÄÓ¦Óã¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿