题目内容
在△ABC中,角A,B,C所对的边的长分别为a,b,c,若asinA+bsinB<csinC,则△ABC的形状是
- A.锐角三角形
- B.直角三角形
- C.钝角三角形
- D.正三角形
C
分析:利用正弦定理化简已知的等式,得到a2+b2<c2,利用余弦定理的逆定理即可得出cosC<0,C为钝角,从而得出结论.
解答:由正弦定理
=
=
,化简已知的等式得:a2+b2 <c2,
再由余弦定理可得cosC=
<0,∴C为钝角,
则△ABC为钝角三角形.
故选C.
点评:此题考查了三角形形状的判断,涉及的知识有:正弦定理、余弦定理,熟练掌握正弦定理、余弦定理,是解本题的关键,属于中档题.
分析:利用正弦定理化简已知的等式,得到a2+b2<c2,利用余弦定理的逆定理即可得出cosC<0,C为钝角,从而得出结论.
解答:由正弦定理
再由余弦定理可得cosC=
则△ABC为钝角三角形.
故选C.
点评:此题考查了三角形形状的判断,涉及的知识有:正弦定理、余弦定理,熟练掌握正弦定理、余弦定理,是解本题的关键,属于中档题.
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |