题目内容
已知数列﹛an﹜满足a1=1,a2=-2,an+2=-
,则该数列前30项的和为
| 1 |
| an |
-
| 23 |
| 2 |
-
.| 23 |
| 2 |
分析:由已知a1=1,a2=-2,an+2=-
可求a3,a4=-
,a5=-
a6=-
,通过前几项的规律可发现数列的周期性规律,可求
| 1 |
| an |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a4 |
解答:解:∵a1=1,a2=-2,an+2=-
∴a3=-
=-1
a4=-
=
a5=-
=1
a6=-
=-2
a7=-
=-1,
a8=-
=
∴数列的各项是:1,-2,-1,
,1,-2,
,-1…即数列是以4为周期循环出现相同的项
∴前30项和S=(1-2-1+
)×7+1-2-
-1=-
故答案为:-
| 1 |
| an |
∴a3=-
| 1 |
| a1 |
a4=-
| 1 |
| a2 |
| 1 |
| 2 |
a5=-
| 1 |
| a3 |
a6=-
| 1 |
| a4 |
a7=-
| 1 |
| a5 |
a8=-
| 1 |
| a6 |
| 1 |
| 2 |
∴数列的各项是:1,-2,-1,
| 1 |
| 2 |
| 1 |
| 2 |
∴前30项和S=(1-2-1+
| 1 |
| 2 |
| 21 |
| 2 |
| 23 |
| 2 |
故答案为:-
| 23 |
| 2 |
点评:本题主要考查了利用数列的递推公式求解数列的和,解题的关键是确定数列的周期
练习册系列答案
相关题目