题目内容
已知函数f(x)=sin2(
+
)+
sin(
+
)cos(
+
)一
.
(1)在△ABC中,若sinC=2sinA,B为锐角且有f(B)=
,求角A,B,C;
(2)若f(x)(x>0)的图象与直线y=
交点的横坐标由小到大依次是x1,x2,…,xn,求数列{xn}的前2n项和,n∈N*.
| x |
| 2 |
| π |
| 12 |
| 3 |
| x |
| 2 |
| π |
| 12 |
| x |
| 2 |
| π |
| 12 |
| 1 |
| 2 |
(1)在△ABC中,若sinC=2sinA,B为锐角且有f(B)=
| ||
| 2 |
(2)若f(x)(x>0)的图象与直线y=
| 1 |
| 2 |
分析:(1)利用二倍角、辅助角公式,化简函数,结合正弦定理、余弦定理,即可求角A,B,C;
(2)由正弦曲线的对称性、周期性,即可求得结论.
(2)由正弦曲线的对称性、周期性,即可求得结论.
解答:解:(1)由题意,f(x)=
+
sin(x+
)-
=
sin(x+
)-
cos(x+
)
=sin(x+
-
)=sinx
∵f(B)=
,∴sinB=
,
∵B为锐角,∴B=
.
∵sinC=2sinA,
∴c=2a,
∴b2=a2+4a2-2a•2acos
=3a2.
∴c2=a2+b2,∴△ABC为直角三角形,∴C=
,A=
-
=
(2)由正弦曲线的对称性、周期性,可知
=
,
=2π+
,…,
=2(n-1)+
∴x1+x2+…+x2n-1+x2n=π+5π+9π+…+(4n-3)π=nπ+
n(n-1),
∴4π=(2n2-n)π.
1-cos(x+
| ||
| 2 |
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
=sin(x+
| π |
| 6 |
| π |
| 6 |
∵f(B)=
| ||
| 2 |
| ||
| 2 |
∵B为锐角,∴B=
| π |
| 3 |
∵sinC=2sinA,
∴c=2a,
∴b2=a2+4a2-2a•2acos
| π |
| 3 |
∴c2=a2+b2,∴△ABC为直角三角形,∴C=
| π |
| 2 |
| 2π |
| 3 |
| π |
| 2 |
| π |
| 6 |
(2)由正弦曲线的对称性、周期性,可知
| x1+x2 |
| 2 |
| π |
| 2 |
| x3+x4 |
| 2 |
| π |
| 2 |
| x2n-1+x2n |
| 2 |
| π |
| 2 |
∴x1+x2+…+x2n-1+x2n=π+5π+9π+…+(4n-3)π=nπ+
| 1 |
| 2 |
∴4π=(2n2-n)π.
点评:本题考查三角函数的化简,考查正弦、余弦定理的运用,考查正弦曲线的对称性、周期性,属于中档题.
练习册系列答案
相关题目