题目内容
已知等差数列{an}满足:a3=7,a5+a7=26,{an]的前n项和为Sn.
(1)求an及Sn;
(2)令bn=
(n∈N*),求数列{bn}的前n项和Tn.
(1)求an及Sn;
(2)令bn=
| 1 | an2 |
分析:(1)等差数列{an},首项为a1,设公差为d,代入a3=7,a5+a7=26,求出d和首项,根据scale的性质,求出an,Sn;
(2)把通项公式an,代入bn,利用裂项法求出其前n项和即可
(2)把通项公式an,代入bn,利用裂项法求出其前n项和即可
解答:解:(1)设等差数列{an}的公差为d,
∵等差数列{an}满足:a3=7,a5+a7=26,
∴a1+2d=7①,2a1+10d=26②,
由①②可得,a1=3,d=2,
∴an=3+(n-1)×2=2n+1,
Sn=
=
=n(n+2);
(2)由(1)知an=2n+1,所以bn=
=
(
-
),
所以Tn=
(1-
+
-
+…+
-
)=
(1-
)=
,
即数列{bn}的前n项和Tn=
.
∵等差数列{an}满足:a3=7,a5+a7=26,
∴a1+2d=7①,2a1+10d=26②,
由①②可得,a1=3,d=2,
∴an=3+(n-1)×2=2n+1,
Sn=
| n(a1+an) |
| 2 |
| n(3+2n+1) |
| 2 |
(2)由(1)知an=2n+1,所以bn=
| 1 |
| an2-1 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
所以Tn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| n |
| 4(n+1) |
即数列{bn}的前n项和Tn=
| n |
| 4(n+1) |
点评:本题考查等差数列的通项与求和,考查裂项法的运用,属于中档题.
练习册系列答案
相关题目