题目内容
设数列{an}的前n项和为Sn,a1=1,an=| sn |
| n |
(1)求证数列{an}为等差数列,并分别写出an和sn关于n表达式
(2)设数列{
| 1 |
| anan+1 |
(3)是否存在自然数n值得s1+
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
分析:(1)根据Sn与an的固有关系an=
进行求出 an-an-1=4,从而可证数列{an}为等差数列,an和sn关于n表达式亦可求.
(2)
=
=
(
-
)应用裂项求和法即可.
(3)由
=2n-1,计算s1+
+
+…+
-(n-1)2=2009,解关于n的方程.
|
(2)
| 1 |
| anan+1 |
| 1 |
| (4n-3)(4n+1) |
| 1 |
| 4 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
(3)由
| sn |
| n |
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
解答:解:(1)由 an=
+2(n-1)
得sn=nan-2n(n-1)
当n≥2时an=sn-sn-1=nan-(n-1)an-1-4(n-1)
得 an-an-1=4(n=2,3,4…)
故{an}是的a1=1为首项,4为公差的等差数列an=4n-3,sn=2n2-n
(2)Tn=
+
+…+
=
+
+…+
=
[(
-
)+(
-
)+(
-
)+…+(
-
)]
=
(1-
)
(3)由
=2n-1
∴s1+
+
+…+
-(n-1)2=1+3+5+7+…+(2n-1)-(n-1)2=n2-(n-1)2=2n-1
令2n-1=2009
得n=1005
所以有在满足条件的自然数n=1005
| sn |
| n |
得sn=nan-2n(n-1)
当n≥2时an=sn-sn-1=nan-(n-1)an-1-4(n-1)
得 an-an-1=4(n=2,3,4…)
故{an}是的a1=1为首项,4为公差的等差数列an=4n-3,sn=2n2-n
(2)Tn=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
=
| 1 |
| 1×5 |
| 1 |
| 5×9 |
| 1 |
| (4n-3)(4n+1) |
=
| 1 |
| 4 |
| 1 |
| 1 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 13 |
| 1 |
| 4n-3 |
| 1 |
| an+1 |
=
| 1 |
| 4 |
| 1 |
| 4n+1 |
(3)由
| sn |
| n |
∴s1+
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
令2n-1=2009
得n=1005
所以有在满足条件的自然数n=1005
点评:本题考查等差数列的判定、通项公式、求和.考查了裂项求和法、转化计算能力.
练习册系列答案
相关题目