题目内容
为了普及环保知识,增强环保意识,某大学从理工类专业的A班和文史类专业的B班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表:| 优秀 | 非优秀 | 总计 | |
| A班 | 14 | 6 | 20 |
| B班 | 7 | 13 | 20 |
| C班 | 21 | 19 | 40 |
(1)卡方统计量
(2)独立性检验的临界值表:
| P(x2≥k) | 0.050 | 0.010 |
| K | 3.841 | 6.635 |
A.有99%的把握认为环保知识测试成绩与专业有关
B.有99%的把握认为环保知识测试成绩与专业无关
C.有95%的把握认为环保知识测试成绩与专业有关
D.有95%的把握认为环保知识测试成绩与专业无关
【答案】分析:由列联表中数据,代入公式,求出X2的值,进而与3.841进行比较,即可得出能否有95%的把握认为环保知识测试成绩与专业有关.
解答:解:由两个班同学的统计得到成绩与专业的列联表:

根据列联表中的数据可得
X2=40(14×13-6×7)2÷(21×19×20×20)≈4.912>3.841
∴有95%的把握认为环保知识测试成绩与专业有关.
故选C.
点评:本题考查独立性检验的应用,考查数据处理能力、运算求解能力和应用意识,本题解题的关键是正确运算出观测值,理解临界值对应的概率的意义,要想知道两个变量之间的有关或无关的精确的可信程度,只有利用独立性检验的有关计算,才能做出判断,本题是一个基础题.
解答:解:由两个班同学的统计得到成绩与专业的列联表:
根据列联表中的数据可得
X2=40(14×13-6×7)2÷(21×19×20×20)≈4.912>3.841
∴有95%的把握认为环保知识测试成绩与专业有关.
故选C.
点评:本题考查独立性检验的应用,考查数据处理能力、运算求解能力和应用意识,本题解题的关键是正确运算出观测值,理解临界值对应的概率的意义,要想知道两个变量之间的有关或无关的精确的可信程度,只有利用独立性检验的有关计算,才能做出判断,本题是一个基础题.
练习册系列答案
相关题目
. |
| x |
A、me=mo=
| ||
B、me=mo<
| ||
C、me<mo<
| ||
D、mo<me<
|