题目内容
已知等差数列{an}的前n项和胃Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2项、第4项、第8项,…,第2n项,…,按原来顺序组成一个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2项、第4项、第8项,…,第2n项,…,按原来顺序组成一个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式.
(1)设等差数列的公差为d,则
∵S3+S5=50,a1,a4,a13成等比数列,
∴3a1+3d+5a1+10d=50,(a1+3d)2=a1(a1+12d)
∵公差d≠0,∴a1=3,d=2
∴数列{an}的通项公式an=2n+1;
(2)据题意得bn=a2n=2×2n+1.
∴数列{bn}的前n项和公式:Tn=(2×2+1)+(2×22+1)+…+(2×2n+1)=2×(2+22+…+2n)+n=2×
+n=2n+2+n-4.
∵S3+S5=50,a1,a4,a13成等比数列,
∴3a1+3d+5a1+10d=50,(a1+3d)2=a1(a1+12d)
∵公差d≠0,∴a1=3,d=2
∴数列{an}的通项公式an=2n+1;
(2)据题意得bn=a2n=2×2n+1.
∴数列{bn}的前n项和公式:Tn=(2×2+1)+(2×22+1)+…+(2×2n+1)=2×(2+22+…+2n)+n=2×
| 2(1-2n) |
| 1-2 |
练习册系列答案
相关题目