题目内容

已知tanα,tanβ是方程x2+3
3
x+4=0的两个根,且-
π
2
<α<
π
2
,-
π
2
<β<
π
2
,则α+β=(  )
A.
π
3
B.-
2
3
π
C.
π
3
或-
2
3
π
D.-
π
3
2
3
π
依题意可知tanα+tanβ=-3
3
,tanα•tnaβ=4
∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
3

∵tanα•tnaβ>0,tanα+tanβ<0
∴tanα<0,tanβ<0
∵-
π
2
<α<
π
2
,-
π
2
<β<
π
2

∴-π<α+β<0
∴α+β=-
3

故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网