题目内容
设数列{an}的前n项和为Sn=n2-2n.
(1)求an;
(2)令 bn=
,证明{bn}是等差数列.
(1)求an;
(2)令 bn=
| a2+a4+…+a2n |
| n |
(1)当n≥2时an=Sn-Sn-1=n2-2n-(n-1)2+2(n-1)=2n-3,
a1=S1=-1满足上式,
∴an=2n-3(n∈N*).
(2)∵an=2n-3=-1+2(n-1),
∴{an}是首项为-1,公差为2的等差数列,
∴a2+a4+…+a2n=
=
=n(2n-1),
∴bn=2n-1=1+2(n-1),
∴{bn}是首项为1,公差为2的等差数列.
a1=S1=-1满足上式,
∴an=2n-3(n∈N*).
(2)∵an=2n-3=-1+2(n-1),
∴{an}是首项为-1,公差为2的等差数列,
∴a2+a4+…+a2n=
| n(a2+a2n) |
| 2 |
| n[1+(4n-3)] |
| 2 |
∴bn=2n-1=1+2(n-1),
∴{bn}是首项为1,公差为2的等差数列.
练习册系列答案
相关题目