题目内容
(2012•张掖模拟)定义在R上的奇函数f(x)满足f(x)+f(1-x)=1,f(
)=
f(x),且当0≤x1<x2≤1时,有f(x1)≤f(x2),则f(
)的值为( )
| x |
| 5 |
| 1 |
| 2 |
| 2011 |
| 2012 |
分析:根据定义在R上的奇函数f(x)满足f(x)+f(1-x)=1,令x=1得f(1)=1,由f(
)=
f(x),令x=1得f(
)=
f(1)=
,令x=
,可求出f(
)=
f(
) =
,不断迭代可得f(
)=
,同理可得f(
)=
,再利用当0≤x1<x2≤1时,有f(x1)≤f(x2),可得有f(
)=
,利用f(x)+f(1-x)=1,及f(
)=1-f(
),即可求得结论.
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 25 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 3125 |
| 1 |
| 32 |
| 1 |
| 1250 |
| 1 |
| 32 |
| 1 |
| 2012 |
| 1 |
| 32 |
| 2011 |
| 2012 |
| 1 |
| 2012 |
解答:解:∵定义在R上的奇函数f(x)满足f(x)+f(1-x)=1,令x=1得f(1)=1
由f(
)=
f(x),令x=1得f(
)=
f(1)=
令x=
,可求出f(
)=
f(
) =
从而可得f(
)=
①
∵f(x)+f(1-x)=1,令x=
可得f(
)+f(1-
)=1,∴f(
)=
同理可得f(
)=
②
这样由①②式,有f(
)=f(
)=
∵
<
<
,当0≤x1<x2≤1时,有f(x1)≤f(x2),
∴有f(
)≥f(
)=
,f(
)≤f(
)=
∴有f(
)=
由f(x)+f(1-x)=1,f(
)=1-f(
)=1-
=
故选B.
由f(
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
令x=
| 1 |
| 5 |
| 1 |
| 25 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 4 |
从而可得f(
| 1 |
| 3125 |
| 1 |
| 32 |
∵f(x)+f(1-x)=1,令x=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
同理可得f(
| 1 |
| 1250 |
| 1 |
| 32 |
这样由①②式,有f(
| 1 |
| 3125 |
| 1 |
| 1250 |
| 1 |
| 32 |
∵
| 1 |
| 3125 |
| 1 |
| 2012 |
| 1 |
| 1250 |
∴有f(
| 1 |
| 2012 |
| 1 |
| 3125 |
| 1 |
| 32 |
| 1 |
| 2012 |
| 1 |
| 1250 |
| 1 |
| 32 |
∴有f(
| 1 |
| 2012 |
| 1 |
| 32 |
由f(x)+f(1-x)=1,f(
| 2011 |
| 2012 |
| 1 |
| 2012 |
| 1 |
| 32 |
| 31 |
| 32 |
故选B.
点评:本题考查抽象函数的性质,考查赋值法的运用,考查函数的单调性,解题的关键是正确赋值及使用夹逼法求值.
练习册系列答案
相关题目