题目内容
(2011•临沂二模)已知向量
=(sinx,
),
=(cosx,-1).
(Ⅰ)若
∥
,求2cos2x-sin2x的值;
(Ⅱ)若(
+
) •
=
,且x∈(0,
),求x的值.
| a |
| 3 |
| 2 |
| b |
(Ⅰ)若
| a |
| b |
(Ⅱ)若(
| a |
| b |
| b |
| ||
| 4 |
| π |
| 2 |
分析:(I)由
∥
可得,-sinx-
cosx=0,化简可求tanx,而2cos2x-sin2x=2cos2x-2sinxcosx=
=
代入可求
(II)利用向量的数量积可求(
+
) •
=
sin(2x+
),从而有
sin(2x+
)=
,结合0<x<
可求x
| a |
| b |
| 3 |
| 2 |
| 2cos2x-2sinxcosx |
| sin2x+cos2x |
| 2-2tanx |
| 1+tan2x |
(II)利用向量的数量积可求(
| a |
| b |
| b |
| ||
| 2 |
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| ||
| 4 |
| π |
| 2 |
解答:解:(I)由
∥
可得,-sinx-
cosx=0
=-
(2分)
tanx=-
(3分)
则2cos2x-sin2x=2cos2x-2sinxcosx
=
=
=
(6分)
(II)
+
=(sinx+cosx,
)
∴(
+
) •
=(sinx+cosx,
)•(cosx,-1)
=sinxcosx+cos2x-
=
sin2x+
cos2x
=
sin(2x+
)(9分)
由
sin(2x+
)=
sin(2x+
)=
(10分)
∵0<x<
∴
<2x+
<
(11分)
∴2x+
=
∴x=
(12分)
| a |
| b |
| 3 |
| 2 |
| sinx |
| cosx |
| 3 |
| 2 |
tanx=-
| 3 |
| 2 |
则2cos2x-sin2x=2cos2x-2sinxcosx
=
| 2cos2x-2sinxcosx |
| sin2x+cos2x |
| 2-2tanx |
| 1+tan2x |
| 20 |
| 13 |
(II)
| a |
| b |
| 1 |
| 2 |
∴(
| a |
| b |
| b |
| 1 |
| 2 |
=sinxcosx+cos2x-
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| π |
| 4 |
由
| ||
| 2 |
| π |
| 4 |
| ||
| 4 |
sin(2x+
| π |
| 4 |
| 1 |
| 2 |
∵0<x<
| π |
| 2 |
∴
| π |
| 4 |
| π |
| 4 |
| 5π |
| 4 |
∴2x+
| π |
| 4 |
| 5π |
| 6 |
∴x=
| 7π |
| 24 |
点评:本题主要考查了向量平行的坐标表示及向量的数量积的坐标表示,三角函数的值域的求解,属于三角函数与向量知识的综合性应用.
练习册系列答案
相关题目