题目内容
已知数列{an}满足a1=
,an=
an-1+
(n≥2,n∈N*),数列{bn}的前n项和Sn,满足:Sn=
(bn-1).
(I)求数列{an}、{bn}的通项公式an,bn;
(II)设cn=
an,①求数列{bncn}前n项的和Tn,②求数列
前n项的和An.
| 1 |
| 2 |
| n2 |
| n2-1 |
| n2 |
| n+1 |
| 2 |
| 3 |
(I)求数列{an}、{bn}的通项公式an,bn;
(II)设cn=
| 2 |
| n |
| 1 |
| coscncoscn+1 |
分析:(I)把式子变形,构造数列{dn}由累加法可得an,由数列的通项和前n想和的关系可得bn;
(II)①由数列{bncn}的特点,用错位相减法可求和,②式子
可化为
[tan(n+1)-tann],下面用裂项相消法可得答案.
(II)①由数列{bncn}的特点,用错位相减法可求和,②式子
| 1 |
| coscncoscn+1 |
| 1 |
| sin1 |
解答:解:(I)因为an=
an-1+
(n≥2,n∈N*),
所以
an-
an-1=n,设dn=
an,
则dn-dn-1=n(n≥2,n∈N*),d1=1,
由累加法可得:dn=
,故an=
n2
∵Sn=
(bn-1) ①,∴Sn+1=
(bn+1-1) ②
②-①得Sn+1-Sn=
(bn+1-bn)=bn+1,∴bn+1=-2bn
把n=1代入①式可得b1=-2,
∴bn=(-2)n
(II)由(I)可知cn=
an=
n2=n
①bncn=n•(-2)n
∴Tn=1•(-2)+2•(-2)2+3•(-2)3+…+n•(-2)n
-2Tn=1•(-2)2+2•(-2)3+3•(-2)4+…+n•(-2)n+1
两式相减得:3Tn=1•(-2)+(-2)2+(-3)3+…+(-2)n-n•(-2)n+1
=
-n•(-2)n+1=-
[1-(-2)n]-n•(-2)n+1
故所求数列的前n项和为:Tn=-
-
(-2)n+1
②∵sin1=sin[(n+1)-n]=sin(n+1)cosn-cos(n+1)sinn
∴
=
=
=
[tan(n+1)-tann]
故所求数列的前n项和为:
An=
[(tan2-tan1)+(tan3-tan2)+…+(tan(n+1)-tann)]
=
[tan(n+1)-tann]
| n2 |
| n2-1 |
| n2 |
| n+1 |
所以
| n+1 |
| n |
| n |
| n-1 |
| n+1 |
| n |
则dn-dn-1=n(n≥2,n∈N*),d1=1,
由累加法可得:dn=
| n(n+1) |
| 2 |
| 1 |
| 2 |
∵Sn=
| 2 |
| 3 |
| 2 |
| 3 |
②-①得Sn+1-Sn=
| 2 |
| 3 |
把n=1代入①式可得b1=-2,
∴bn=(-2)n
(II)由(I)可知cn=
| 2 |
| n |
| 2 |
| n |
| 1 |
| 2 |
①bncn=n•(-2)n
∴Tn=1•(-2)+2•(-2)2+3•(-2)3+…+n•(-2)n
-2Tn=1•(-2)2+2•(-2)3+3•(-2)4+…+n•(-2)n+1
两式相减得:3Tn=1•(-2)+(-2)2+(-3)3+…+(-2)n-n•(-2)n+1
=
| -2[1-(-2)N] |
| 1-(-2) |
| 2 |
| 3 |
故所求数列的前n项和为:Tn=-
| 2 |
| 9 |
| 3n+1 |
| 9 |
②∵sin1=sin[(n+1)-n]=sin(n+1)cosn-cos(n+1)sinn
∴
| 1 |
| coscncoscn+1 |
| sin1 |
| sin1cosncos(n+1) |
| sin(n+1)cosn-cos(n+1)sinn |
| sin1cosncos(n+1) |
=
| 1 |
| sin1 |
故所求数列的前n项和为:
An=
| 1 |
| sin1 |
=
| 1 |
| sin1 |
点评:本题为数列的综合应用,涉及累加法,错位相减法,裂项相消法,属中档题.
练习册系列答案
相关题目