ÌâÄ¿ÄÚÈÝ
17£®ÒÑÖªº¯Êýf£¨x£©=2x£¬g£¨x£©=x2+ax£¨ÆäÖÐa¡ÊR£©£®¶ÔÓÚ²»ÏàµÈµÄʵÊýx1¡¢x2£¬Éèm=$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¬n=$\frac{g£¨{x}_{1}£©-g£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£®ÏÖÓÐÈçÏÂÃüÌ⣺¢Ù¶ÔÓÚÈÎÒâ²»ÏàµÈµÄʵÊýx1¡¢x2£¬¶¼ÓÐm£¾0£»
¢Ú¶ÔÓÚÈÎÒâµÄa¼°ÈÎÒâ²»ÏàµÈµÄʵÊýx1¡¢x2£¬¶¼ÓÐn£¾0£»
¢Û¶ÔÓÚÈÎÒâµÄa£¬´æÔÚ²»ÏàµÈµÄʵÊýx1¡¢x2£¬Ê¹µÃm=n£»
¢Ü¶ÔÓÚÈÎÒâµÄa£¬´æÔÚ²»ÏàµÈµÄʵÊýx1¡¢x2£¬Ê¹µÃm=-n£®
ÆäÖеÄÕæÃüÌâÓТ٢ܣ¨Ð´³öËùÓÐÕæÃüÌâµÄÐòºÅ£©£®
·ÖÎö ÔËÓÃÖ¸Êýº¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉÅжϢ٣»Óɶþ´Îº¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉÅжϢڣ»
ͨ¹ýº¯Êýh£¨x£©=x2+ax-2x£¬Çó³öµ¼ÊýÅжϵ¥µ÷ÐÔ£¬¼´¿ÉÅжϢۣ»
ͨ¹ýº¯Êýh£¨x£©=x2+ax+2x£¬Çó³öµ¼ÊýÅжϵ¥µ÷ÐÔ£¬¼´¿ÉÅжϢܣ®
½â´ð ½â£º¶ÔÓÚ¢Ù£¬ÓÉÓÚ2£¾1£¬ÓÉÖ¸Êýº¯ÊýµÄµ¥µ÷ÐԿɵÃf£¨x£©ÔÚRÉϵÝÔö£¬¼´ÓÐm£¾0£¬Ôò¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬Óɶþ´Îº¯ÊýµÄµ¥µ÷ÐԿɵÃg£¨x£©ÔÚ£¨-¡Þ£¬-$\frac{a}{2}$£©µÝ¼õ£¬ÔÚ£¨-$\frac{a}{2}$£¬+¡Þ£©µÝÔö£¬Ôòn£¾0²»ºã³ÉÁ¢£¬
Ôò¢Ú´íÎó£»
¶ÔÓÚ¢Û£¬ÓÉm=n£¬¿ÉµÃf£¨x1£©-f£¨x2£©=g£¨x1£©-g£¨x2£©£¬¼´Îªg£¨x1£©-f£¨x1£©=g£¨x2£©-f£¨x2£©£¬
¿¼²éº¯Êýh£¨x£©=x2+ax-2x£¬h¡ä£¨x£©=2x+a-2xln2£¬
µ±a¡ú-¡Þ£¬h¡ä£¨x£©Ð¡ÓÚ0£¬h£¨x£©µ¥µ÷µÝ¼õ£¬Ôò¢Û´íÎó£»
¶ÔÓڢܣ¬ÓÉm=-n£¬¿ÉµÃf£¨x1£©-f£¨x2£©=-[g£¨x1£©-g£¨x2£©]£¬¿¼²éº¯Êýh£¨x£©=x2+ax+2x£¬
h¡ä£¨x£©=2x+a+2xln2£¬¶ÔÓÚÈÎÒâµÄa£¬h¡ä£¨x£©²»ºã´óÓÚ0»òСÓÚ0£¬Ôò¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ü£®
µãÆÀ ±¾Ì⿼²éº¯ÊýµÄµ¥µ÷ÐÔ¼°ÔËÓã¬×¢ÒâÔËÓÃÖ¸Êýº¯ÊýºÍ¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ£¬ÒÔ¼°µ¼ÊýÅжϵ¥µ÷ÐÔÊǽâÌâµÄ¹Ø¼ü£®
| A£® | £¨-¡Þ£¬-1£© | B£® | £¨-1£¬0£© | C£® | £¨0£¬1£© | D£® | £¨1£¬+¡Þ£© |
| A£® | ³äÒªÌõ¼þ | B£® | ³ä·Ö²»±ØÒªÌõ¼þ | ||
| C£® | ±ØÒª²»³ä·ÖÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | ³ä·Ö¶ø²»±ØÒªÌõ¼þ | B£® | ±ØÒª¶ø²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | ³ä·Ö¶ø²»±ØÒªÌõ¼þ | B£® | ±ØÒª¶ø²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |