题目内容

设函数f(x)=
(a-2)x,(x≥2)
(
1
2
)
x
 
-1,(x<2)
an=f(n)
,若数列{an}是单调递减数列,则实数a的取值范围为(  )
分析:根据题意可知函数f(x)在x∈N+上是减函数,则有f(1)>f(2)>f(3)>…,结合函数f(x)的图象可得关于a的限制条件,解出即可.
解答:解:数列{an}是单调递减数列,即有a1>a2>a3>…>an>an+1>…,
也即f(1)>f(2)>f(3)>…,
所以函数f(x)在x∈N+上是减函数,
故有
a-2<0
(
1
2
)1-1>(a-2)×2
,解得a<
7
4

所以实数a的取值范围是(-∞,
7
4
).
故选C.
点评:本题考查函数与数列的单调性问题,本题结合函数图象便于分析解决,注意数形结合思想的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网