题目内容
已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)=f(x1)+f(x2)-2.
(I)求f(0)的值;
(II)求f(x)的最大值;
(III)设数列{an}的前n项和为Sn,且Sn=-
(an-3)(n∈N*),求f(a1)+f(a2)+…+f(an).
(I)求f(0)的值;
(II)求f(x)的最大值;
(III)设数列{an}的前n项和为Sn,且Sn=-
| 1 |
| 2 |
(Ⅰ)令x1=x2=0,
由③知f(0)=2f(0)-2?f(0)=2;
(Ⅱ)任取x1x2∈[0,1],且x1<x2,
则0<x2-x1≤1,∴f(x2-x1)≥2
∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1)+f(x1)-2-f(x1)=f(x2-x1)-2≥0
∴f(x2)≥f(x1),则f(x)≤f(1)=3.
∴f(x)的最大值为3;
(Ⅲ)由Sn=-
(an-3)知,
当n=1时,a1=1;当n≥2时,an=-
an+
an-1
∴an=
an-1(n≥2),又a1=1,∴an=
∴f(an)=f(
)=f(
+
+
)=f(
)+f(
)-2
=3f(
)-4=3f(an+1)-4
∴f(an+1)=
f(an)+
∴f(an+1)-2=
(f(an)-2)
又f(a1)-2=1∴f(an)-2=(
)n-1,∴f(an)=(
)n-1+2
∴f(a1)+f(a2)++f(an)=2n+
-
.
由③知f(0)=2f(0)-2?f(0)=2;
(Ⅱ)任取x1x2∈[0,1],且x1<x2,
则0<x2-x1≤1,∴f(x2-x1)≥2
∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1)+f(x1)-2-f(x1)=f(x2-x1)-2≥0
∴f(x2)≥f(x1),则f(x)≤f(1)=3.
∴f(x)的最大值为3;
(Ⅲ)由Sn=-
| 1 |
| 2 |
当n=1时,a1=1;当n≥2时,an=-
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 1 |
| 3 |
| 1 |
| 3n-1 |
∴f(an)=f(
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 3n |
| 1 |
| 3n |
| 2 |
| 3n |
| 1 |
| 3n |
=3f(
| 1 |
| 3n |
∴f(an+1)=
| 1 |
| 3 |
| 4 |
| 3 |
∴f(an+1)-2=
| 1 |
| 3 |
又f(a1)-2=1∴f(an)-2=(
| 1 |
| 3 |
| 1 |
| 3 |
∴f(a1)+f(a2)++f(an)=2n+
| 3 |
| 2 |
| 1 |
| 2×3n-1 |
练习册系列答案
相关题目