题目内容
已知数列{an}满足递推式:an+1-| 2 |
| an |
| 2 |
| an-1 |
(1)若bn=
| 1 |
| 1+an |
(2)求证:|a1-2|+|a2-2|+…+|an-2|<3,(n∈N*).
分析:(1)由an+1-
=an-
(n≥2)得an+1-
=1,从而可求通项公式;
(2)由(1)知
=
[1-(-
)n],an+1=
,从而有
,故可得证.
| 2 |
| an |
| 2 |
| an-1 |
| 2 |
| an |
(2)由(1)知
| 1 |
| 1+an |
| 1 |
| 3 |
| 1 |
| 2 |
| 3 | ||
1-(-
|
|
解答:解:(1)∵an+1-
=an-
═a2-
=3-2=1,∴an+1-
=1
∴bn=
[1-(-
)n](5分)
(2)由(1)知
=
[1-(-
)n],∴an+1=
∴|a1-2|+|a2-2|+…+|a2k-1-2|+|a2k-2-2|<3(
+
+…+
)=3(1-
)<3
而|a1-2|+|a2-2|+…+|a2k-2|+|a2k+1-2|<3(1-
)+
=3 (1+
-
)
∵22k+1+1>22k,∴
<
,∴|a1-2|+|a2-2|+…+|an-2|<3
| 2 |
| an |
| 2 |
| an-1 |
| 2 |
| a1 |
| 2 |
| an |
∴bn=
| 1 |
| 3 |
| 1 |
| 2 |
(2)由(1)知
| 1 |
| 1+an |
| 1 |
| 3 |
| 1 |
| 2 |
| 3 | ||
1-(-
|
|
∴|a1-2|+|a2-2|+…+|a2k-1-2|+|a2k-2-2|<3(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 22k |
| 1 |
| 22k |
而|a1-2|+|a2-2|+…+|a2k-2|+|a2k+1-2|<3(1-
| 1 |
| 22k |
| 3 |
| 22k+1+1 |
| 1 |
| 22k+1+1 |
| 1 |
| 22k |
∵22k+1+1>22k,∴
| 1 |
| 22k+1+1 |
| 1 |
| 22k |
点评:本题主要考查数列的通项公式,绝对值不等式的证明,难度较大.
练习册系列答案
相关题目