题目内容
如果△ABC外接圆半径为R,且2R(sin2A-sin2C)=(
a-b)sinB,
(1)求角C的值
(2)求△ABC面积的最大值.
| 2 |
(1)求角C的值
(2)求△ABC面积的最大值.
(1)由2R(sin2A-sin2C)=(
a-b)sinB,
根据正弦定理得a2-c2=(
a-b)b=
ab-b2,
∴cosC=
=
,
∴角C的大小为45°,
(2)∵S=
absinC=
×
ab
=
R2sinAsinB=
R2sinAsin(135°-A)
=
R2sinA(sin135°cosA-cos135°sinA)
=R2(sinAcosA+sin2A)
=R2•
=R2•
∴当2A=135°,即A=67.5°时,Smax=
R2
| 2 |
根据正弦定理得a2-c2=(
| 2 |
| 2 |
∴cosC=
| a2+b2-c2 |
| 2ab |
| ||
| 2 |
∴角C的大小为45°,
(2)∵S=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
=
| 2 |
| 2 |
=
| 2 |
=R2(sinAcosA+sin2A)
=R2•
| 1+sin2A-cos2A |
| 2 |
=R2•
1+
| ||||
| 2 |
∴当2A=135°,即A=67.5°时,Smax=
| ||
| 2 |
练习册系列答案
相关题目