题目内容
“a=l”是“直线x+ay=l与直线(2a-1)x+ay=2平行”的( )
| A.充分不必要条件 | B.必要不充分条件 |
| C.充要条件 | D.既不充分也不必要条件 |
若“a=1“成立,则两条直线的方程为x+y=1;x+y=2,此时两直线平行.
若直线x+ay=l与直线(2a-1)x+ay=2平行”成立,
∴当a=0时,两直线方程为x=1;x=-2满足,
即两直线平行推不出a=1
故“a=l”是“直线x+ay=l与直线(2a-1)x+ay=2平行”的充分不必要条件.
故选A
若直线x+ay=l与直线(2a-1)x+ay=2平行”成立,
∴当a=0时,两直线方程为x=1;x=-2满足,
即两直线平行推不出a=1
故“a=l”是“直线x+ay=l与直线(2a-1)x+ay=2平行”的充分不必要条件.
故选A
练习册系列答案
相关题目