题目内容

9.已知数列{an}是公比大于1的等比数列,且a102=a15,Sn=a1+a2+…+an,Tn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,求满足Sn>Tn的最小正整数n.

分析 设等比数列的首项为a,公比为q,且q>1,运用等比数列的通项公式,可得aq4=1,运用求和公式,化简Sn
Tn,再由指数函数的单调性,解不等式即可得到n的最小值.

解答 解:设等比数列的首项为a,公比为q,且q>1,
由a102=a15,可得a2q18=aq14,化简得aq4=1,
Sn=a1+a2+…+an=$\frac{a(1-{q}^{n})}{1-q}$=$\frac{a({q}^{n}-1)}{q-1}$,
Tn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{\frac{1}{a}(1-\frac{1}{{q}^{n}})}{1-\frac{1}{q}}$=$\frac{q({q}^{n}-1)}{a{q}^{n}(q-1)}$,
由Sn>Tn,可得a>$\frac{q}{a{q}^{n}}$,
即有a2>q1-n
即为q-8>q1-n
由q>1可得-8>1-n,
即有n>9,
则满足Sn>Tn的最小正整数n是10.

点评 本题考查等比数列的通项和求和公式的运用,同时考查指数函数的单调性的运用和不等式的解法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网