ÌâÄ¿ÄÚÈÝ
¶¯Ô²C¹ý¶¨µãF(
£¬0)£¬ÇÒÓëÖ±Ïßx=-
ÏàÇУ¬ÆäÖÐp£¾0£®ÉèÔ²ÐÄCµÄ¹ì¼£¦£µÄ³ÌΪF£¨x£¬y£©=0
£¨1£©ÇóF£¨x£¬y£©=0£»
£¨2£©ÇúÏߦ£ÉϵÄÒ»¶¨µãP£¨x0£¬y0£©£¨y0¡Ù0£©£¬·½ÏòÏòÁ¿
=(y0£¬-p)µÄÖ±Ïßl£¨²»¹ýPµã£©ÓëÇúÏߦ£½»ÓëA¡¢BÁ½µã£¬ÉèÖ±ÏßPA¡¢PBбÂÊ·Ö±ðΪkPA£¬kPB£¬¼ÆËãkPA+kPB£»
£¨3£©ÇúÏߦ£ÉϵÄÁ½¸ö¶¨µãP0£¨x0£¬y0£©¡¢Q0(x0¡ä£¬y0¡ä)£¬·Ö±ð¹ýµãP0£¬Q0×÷Çãб½Ç»¥²¹µÄÁ½ÌõÖ±ÏßP0M£¬Q0N·Ö±ðÓëÇúÏߦ£½»ÓÚM£¬NÁ½µã£¬ÇóÖ¤Ö±ÏßMNµÄбÂÊΪ¶¨Öµ£®
| p |
| 2 |
| p |
| 2 |
£¨1£©ÇóF£¨x£¬y£©=0£»
£¨2£©ÇúÏߦ£ÉϵÄÒ»¶¨µãP£¨x0£¬y0£©£¨y0¡Ù0£©£¬·½ÏòÏòÁ¿
| d |
£¨3£©ÇúÏߦ£ÉϵÄÁ½¸ö¶¨µãP0£¨x0£¬y0£©¡¢Q0(x0¡ä£¬y0¡ä)£¬·Ö±ð¹ýµãP0£¬Q0×÷Çãб½Ç»¥²¹µÄÁ½ÌõÖ±ÏßP0M£¬Q0N·Ö±ðÓëÇúÏߦ£½»ÓÚM£¬NÁ½µã£¬ÇóÖ¤Ö±ÏßMNµÄбÂÊΪ¶¨Öµ£®
£¨1£©¹ýµãC×÷Ö±Ïßx=-
µÄ´¹Ïߣ¬´¹×ãΪN£¬
ÓÉÌâÒâÖª£º|CF|=|CN|£¬¼´¶¯µãCµ½¶¨µãFÓ붨ֱÏßx=-
µÄ¾àÀëÏàµÈ£¬
ÓÉÅ×ÎïÏߵ͍ÒåÖª£¬µãCµÄ¹ì¼£ÎªÅ×ÎïÏߣ¬
ÆäÖÐF(
£¬0)Ϊ½¹µã£¬x=-
Ϊ׼Ïߣ¬
ËùÒԹ켣·½³ÌΪy2=2px£¨p£¾0£©£»
£¨2£©Éè A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©
²»¹ýµãPµÄÖ±Ïßl·½³ÌΪy=-
x+b£¬
ÓÉ
µÃy2+2y0y-2y0b=0£¬
Ôòy1+y2=-2y0£¬
kAP+kBP=
+
=
+
=
+
=
=0£®
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÔòkMN=
=
=
£¨***£©
ÉèMP0µÄÖ±Ïß·½³ÌΪΪy-y0=k£¨x-x0£©ÓëÇúÏßy2=2pxµÄ½»µãP0£¨x0£¬y0£©£¬M£¨x1£¬y1£©£®
ÓÉ
£¬y2-
y+
-2px0=0µÄÁ½¸ùΪy0£¬y1
Ôòy0+y1=
£¬¡ày1=
-y0
ͬÀíy0¡ä+y2=
£¬µÃy2=-
-y0¡ä
¡ày1+y2=-(y0+y0¡ä)£¬
´úÈ루***£©¼ÆËãµÃkMN=-
£®ÊǶ¨Öµ£¬ÃüÌâµÃÖ¤
| p |
| 2 |
ÓÉÌâÒâÖª£º|CF|=|CN|£¬¼´¶¯µãCµ½¶¨µãFÓ붨ֱÏßx=-
| p |
| 2 |
ÓÉÅ×ÎïÏߵ͍ÒåÖª£¬µãCµÄ¹ì¼£ÎªÅ×ÎïÏߣ¬
ÆäÖÐF(
| p |
| 2 |
| p |
| 2 |
ËùÒԹ켣·½³ÌΪy2=2px£¨p£¾0£©£»
£¨2£©Éè A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©
²»¹ýµãPµÄÖ±Ïßl·½³ÌΪy=-
| p |
| y0 |
ÓÉ
|
Ôòy1+y2=-2y0£¬
kAP+kBP=
| y1-y0 |
| x1-x0 |
| y2-y0 |
| x2-x0 |
=
| y1-y0 | ||||||||
|
| y2-y0 | ||||||||
|
=
| 2p |
| y1+y0 |
| 2p |
| y2+y0 |
=
| 2p(y1+y2+2y0) |
| (y1+y0)(y2+y0) |
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÔòkMN=
| y2-y1 |
| x2-x1 |
| y2-y1 | ||||||||
|
| 2p |
| y1+y2 |
ÉèMP0µÄÖ±Ïß·½³ÌΪΪy-y0=k£¨x-x0£©ÓëÇúÏßy2=2pxµÄ½»µãP0£¨x0£¬y0£©£¬M£¨x1£¬y1£©£®
ÓÉ
|
| 2p |
| k |
| 2py0 |
| k |
Ôòy0+y1=
| 2p |
| k |
| 2p |
| k |
ͬÀíy0¡ä+y2=
| 2p |
| -k |
| 2p |
| k |
¡ày1+y2=-(y0+y0¡ä)£¬
´úÈ루***£©¼ÆËãµÃkMN=-
| 2p |
| y0+y0¡ä |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿