题目内容

已知数列{an}满足a1=3,an+1-3an=3n(n∈N*),数列{bn}满足bn=
an
3n

(1)证明数列{bn}是等差数列并求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn
解(1)证明:由bn=
an
3n
,得bn+1=
an+1
3n+1

bn+1-bn=
an+1
3n+1
-
an
3n
=
1
3
---------------------(2分)
所以数列{bn}是等差数列,首项b1=1,公差为
1
3
-----------(4分)
bn=1+
1
3
(n-1)=
n+2
3
------------------------(6分)
(2)an=3nbn=(n+2)×3n-1-------------------------(7分)
∴Sn=a1+a2+…+an=3×1+4×3+…+(n+2)×3n-1----①
3Sn=3×3+4×32+…+(n+2)×3n-------------------②(9分)
①-②得-2Sn=3×1+3+32+…+3n-1-(n+2)×3n
=2+1+3+32+…+3n-1-(n+2)×3n=
3n+3
2
-(n+2)×3n
------(11分)
Sn=-
3n+3
4
+
(n+2)3n
2
-----------------(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网