题目内容
已知数列{an}的前n项和an+1=2an+2,且a1=2,数列{2bn-1}为等比数列,且b1=2,b4=4
(1)求{an}、{bn}的通项公式
(2)已知cn=an+2,求{cn•bn}的前n项和Sn.
(1)求{an}、{bn}的通项公式
(2)已知cn=an+2,求{cn•bn}的前n项和Sn.
分析:(1)由an+1=2an+2,知
=2,再由a1=2,得到an=2n+1-2.数列{2bn-1}为等比数列,{bn}是等差数列,由b1=2,b4=4,能求出{bn}的通项公式.
(2)cn=an+2=2n+1,cn•bn=2n+1•(
n+
)=2n(
n+
),所以Sn=2(
+
)+22(
×2+
)+…+2n-1[
×(n-1)+
]+2n(
n+
),再由错位相减法能求出{cn•bn}的前n项和Sn.
| an+1+2 |
| an+2 |
(2)cn=an+2=2n+1,cn•bn=2n+1•(
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
解答:解:(1)∵an+1=2an+2,
∴an+1+2=2(an+2),
∴
=2,
∵a1=2,
∴a1+2=4,
∴{an+2}是以4为首项,以2为公比的等比数列,
∴an+2=4×2n-1=2n+1.
∴an=2n+1-2.
∵数列{2bn-1}为等比数列,
∴{bn}是等差数列,
∵b1=2,b4=4,
∴2+3d=4,
d=
,
∴bn=2+(n-1)×
=
n+
.
(2)∵an=2n+1-2.
∴cn=an+2=2n+1,
∴cn•bn=2n+1•(
n+
)=2n(
n+
),
∴Sn=2(
+
)+22(
×2+
)+…+2n-1[
×(n-1)+
]+2n(
n+
),①
∴2Sn=22(
+
)+23(
×2+
)+…+2n[
(n-1)+
]+2n+1(
n+
),②
①-②,得-Sn=8+
×22+…+
×2n-1+
×2n-2n+1(
n+
)
=8+
(22+23+…+2n-1+2n)-2n+1(
n+
)
=8+
×
-2n+1(
n+
)
=8+2n+1-4-2n+1(
n+
)
=4-2n+1(
n+
),
∴Sn=2n+1(
n+
)-4.
∴an+1+2=2(an+2),
∴
| an+1+2 |
| an+2 |
∵a1=2,
∴a1+2=4,
∴{an+2}是以4为首项,以2为公比的等比数列,
∴an+2=4×2n-1=2n+1.
∴an=2n+1-2.
∵数列{2bn-1}为等比数列,
∴{bn}是等差数列,
∵b1=2,b4=4,
∴2+3d=4,
d=
| 2 |
| 3 |
∴bn=2+(n-1)×
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
(2)∵an=2n+1-2.
∴cn=an+2=2n+1,
∴cn•bn=2n+1•(
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
∴Sn=2(
| 4 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
∴2Sn=22(
| 4 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
①-②,得-Sn=8+
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
=8+
| 4 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
=8+
| 4 |
| 3 |
| 4(1-2n-1) |
| 1-2 |
| 4 |
| 3 |
| 8 |
| 3 |
=8+2n+1-4-2n+1(
| 4 |
| 3 |
| 8 |
| 3 |
=4-2n+1(
| 4 |
| 3 |
| 5 |
| 3 |
∴Sn=2n+1(
| 4 |
| 3 |
| 5 |
| 3 |
点评:本题考查数列的通项公式的求法和{cn•bn}的前n项和Sn.综合性强,难度大,易出错.解题时要认真审题,注意构造法和错位相减法的灵活运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |