题目内容
(本小题满分12分)
甲乙两个班级进行一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下的列联表:
班级与成绩列联表
|
|
优 秀 |
不优秀 |
|
甲 班 |
10 |
35 |
|
乙 班 |
7 |
38 |
根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
附:
![]()
|
|
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
【答案】
在犯错误的概率不超过0.01的前提下不能认为成绩与班级有关系。
【解析】本试题主要是考查了独立性检验的思想的运用,求解分类变量的相关性问题的判定。只要将已知的数据代入到关系式
中计算并比较列表中的数据可得结论。
![]()
因为![]()
所以在犯错误的概率不超过0.01的前提下不能认为成绩与班级有关系。
练习册系列答案
相关题目