题目内容
如图,椭圆C:
+
=1(a>b>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

| x2 |
| a2 |
| y2 |
| b2 |
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.
(Ⅰ)由题设a=2,c=1,从而b2=a2-c2=3,
所以椭圆C前方程为
| x2 |
| 4 |
| y2 |
| 3 |
(Ⅱ)(i)由题意得F(1,0),N(4,0).
设A(m,n),则B(m,-n)(n≠0),
| m2 |
| 4 |
| n2 |
| 3 |
AF与BN的方程分别为:n(x-1)-(m-1)y=0,
n(x-4)-(m-4)y=0.
设M(x0,y0),则有n(x0-1)-(m-1)y0=0,②
n(x0-4)+(m-4)y0=0,③
由②,③得
x0=
| 5m-8 |
| 2m-5 |
| 3n |
| 2m-5 |
由于
| ||
| 4 |
| ||
| 3 |
| (5m-8)2 |
| 4(2m-5)2 |
| 3n2 |
| (2m-5)2 |
=
| (5m-8)2 |
| 4(2m-5)2 |
| 3n2 |
| (2m-5)2 |
=
| (5m-8)2+12n2 |
| 4(2m-5)2 |
=
| (5m-8)2+36-9m2 |
| 4(2m-5)2 |
=1
所以点M恒在椭圆G上.
(ⅱ)设AM的方程为x=ty+1,
代入
| x2 |
| 4 |
| y2 |
| 3 |
设A(x1,y1),M(x2,y2),则有y1+y2=-
| 6x |
| 3x2+4 |
| 9 |
| 3t2+4 |
|y1-y2|=
| (y1+y2)2-4y1y2 |
4
| ||||
| 3t2+4 |
令3t2+4=λ(λ≥4),则|y1-y2|=
4
| ||||
| λ |
| 3 |
-(
|
| 3 |
-(
|
∵λ≥4,0<
| 1 |
| λ |
| 1 |
| 4 |
| 1 |
| λ |
| 1 |
| 4 |
| 3 |
| 2 |
| 9 |
| 2 |
练习册系列答案
相关题目