题目内容
已知向量
【答案】分析:先设出X的坐标,则
的坐标可得,进而利用平面向量的运算法则求得
的表达式,利用对称轴求得λ,求得最小值.
解答:解:∵X是直线OP上的点,则设X(2λ,λ)
即有
(1-2λ,7-λ),
(5-2λ,1-λ)
∴
=(1-2λ)(5-2λ)+(7-λ)(1-λ)=5-2λ-10λ+4λ2+7-7λ-λ+λ2=5λ2-20λ+12
对称轴为λ=-(-20)÷(5×2)=2
∴最小值为5×2×2-20×2+12=-8
故答案为:-8
点评:本题主要考查了函数的最值及其几何意义.考查了学生对基础知识的综合运用.
解答:解:∵X是直线OP上的点,则设X(2λ,λ)
即有
∴
对称轴为λ=-(-20)÷(5×2)=2
∴最小值为5×2×2-20×2+12=-8
故答案为:-8
点评:本题主要考查了函数的最值及其几何意义.考查了学生对基础知识的综合运用.
练习册系列答案
相关题目
已知向量
=(2,1),
•
=10,|
+
|=5
,则|
|=( )
| a |
| a |
| b |
| a |
| b |
| 2 |
| b |
A、
| ||
B、
| ||
| C、5 | ||
| D、25 |
已知向量
=(2,1),
=(x,3),且
∥
,则实数x的值为( )
| a |
| b |
| a |
| b |
A、
| ||
| B、3 | ||
| C、6 | ||
| D、9 |
已知向量
=(2,-1,3),
=(-4,2,x),且
⊥
,则实数x的值为( )
| a |
| b |
| a |
| b |
| A、-2 | ||
| B、2 | ||
C、-
| ||
D、
|