题目内容
函数f(x)对任意x∈R都有f(x)+f(1-x)=| 1 |
| 2 |
(1)求f(
| 1 |
| 2 |
| 1 |
| n |
| n-1 |
| n |
(2)数列{an}满足an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
(3)令bn=
| 4 |
| 4an-1 |
| b | 2 1 |
| b | 2 2 |
| b | 2 3 |
| b | 2 n |
| 16 |
| n |
分析:(1)令x=
,得f(
) =
,令x=
得f(
)+f(1-
)=
=f(
)+f(
).
(2)an=f(0)+f(
)++f(
)+f(1),又an=f(1)+f(
)++f(
)+f(0),
两式相加能导出an.
(3)bn=
=
Tn=
+
++
=16(1+
+
++
≤16[1+
+
++
)=16[1+(1-
)+(
-
)++(
-
)]=32-
=Sn,由此知Tn≤Sn
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n |
| n-1 |
| n |
(2)an=f(0)+f(
| 1 |
| n |
| n-1 |
| n |
| n-1 |
| n |
| 1 |
| n |
两式相加能导出an.
(3)bn=
| 4 |
| 4an-1 |
| 4 |
| n |
| b | 2 1 |
| b | 2 2 |
| b | 2 n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 16 |
| n |
解答:解:(1)令x=
,得f(
) =
,
令x=
得f(
)+f(1-
)=
=f(
)+f(
)
(2)an=f(0)+f(
)++f(
)+f(1)
又an=f(1)+f(
)++f(
)+f(0),
两式相加2an=[f(0)+f(1)]+[f(
)+f(
)]++[f(1)+f(0)]
=
,∴an=
.
(3)bn=
=
Tn=
+
++
=16(1+
+
++
)
<16[1+
+
+…+
]
=16[1+(1-
)+(
-
)++(
-
)]
=16(2-
)=32-
=Sn
∴Tn≤Sn
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
令x=
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n |
| n-1 |
| n |
(2)an=f(0)+f(
| 1 |
| n |
| n-1 |
| n |
又an=f(1)+f(
| n-1 |
| n |
| 1 |
| n |
两式相加2an=[f(0)+f(1)]+[f(
| 1 |
| n |
| n-1 |
| n |
=
| n+1 |
| 2 |
| n+1 |
| 4 |
(3)bn=
| 4 |
| 4an-1 |
| 4 |
| n |
| b | 2 1 |
| b | 2 2 |
| b | 2 n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
<16[1+
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
=16[1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=16(2-
| 1 |
| n |
| 16 |
| n |
∴Tn≤Sn
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目