题目内容

某海域有A、B两个岛屿,B岛在A岛正东40海里处.经多年观察研究发现,某种鱼群洄游的路线像一个椭圆,其焦点恰好是A、B两岛.曾有渔船在距A岛正西20海里发现过鱼群.某日,研究人员在A、B两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A、B两岛收到鱼群反射信号的时间比为5:3.你能否确定鱼群此时分别与A、B两岛的距离?
以AB的中点为原点,AB所在直线为x轴建立直角坐标系
设椭圆方程为:
x2
a2
+
y2
b2
=1(a>b>0)
c=
a2-b2
------(3分)
因为焦点A的正西方向椭圆上的点为左顶点,
所以a-c=20------(5分)
又|AB|=2c=40,
则c=20,a=40,
b=20
3
------(7分)
所以鱼群的运动轨迹方程是
x2
1600
+
y2
1200
=1
------(8分)
由于A,B两岛收到鱼群反射信号的时间比为5:3,
因此设此时距A,B两岛的距离分别为5k,3k-------(10分)
由椭圆的定义可知5k+3k=2×40=80?k=10--------(13分)
即鱼群分别距A,B两岛的距离为50海里和30海里.------(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网