题目内容
数列{an}的通项公式an=cos
,n∈N*,当n=______时,an有最小值.
| 7π |
| 2n |
∵数列{an}的通项公式an=cos
,n∈N*,
∴a1=cos
=cos(4π-
)=cos(-
)=cos
=0,
a2=cos
=cos(2π-
)=cos(-
)=cos
=
,
a3=cos
=cos(π+
)=-cos
=-
,
a4=cos
=cos(π-
)=-cos
=-
=-
.
a5=cos
=cos(π-
)=-cos
>-cos
=a4.
a6=cos
=cos(π-
)=-cos
>-cos
=a5,
a7=cos
=0.
当n≥8,n∈N*时,
是锐角,an=cos
>0,
∴当n=4时,an有最小值.
故答案为:4.
| 7π |
| 2n |
∴a1=cos
| 7π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
a2=cos
| 7π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
a3=cos
| 7π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| ||
| 2 |
a4=cos
| 7π |
| 8 |
| π |
| 8 |
| π |
| 8 |
|
| ||||
| 2 |
a5=cos
| 7π |
| 10 |
| 3π |
| 10 |
| 3π |
| 10 |
| π |
| 8 |
a6=cos
| 7π |
| 12 |
| 5π |
| 12 |
| 5π |
| 12 |
| 3π |
| 10 |
a7=cos
| π |
| 2 |
当n≥8,n∈N*时,
| 7π |
| 2n |
| 7π |
| 2n |
∴当n=4时,an有最小值.
故答案为:4.
练习册系列答案
相关题目