题目内容

数列{an}的通项公式an=cos
2n
,n∈N*,当n=______时,an有最小值.
∵数列{an}的通项公式an=cos
2n
,n∈N*
a1=cos
2
=cos(4π-
π
2
)=cos(-
π
2
)=cos
π
2
=0,
a2=cos
4
=cos(2π-
π
4
)=cos(-
π
4
)=cos
π
4
=
2
2

a3=cos
6
=cos(π+
π
6
)=-cos
π
6
=-
3
2

a4=cos
8
=cos(π-
π
8
)
=-cos
π
8
=-
1+cos
π
4
2
=-
2+
2
2

a5=cos
10
=cos(π-
10
)
=-cos
10
>-cos
π
8
=a4
a6=cos
12
=cos(π-
12
)=-cos
12
>-cos
10
=a5
a7=cos
π
2
=0.
当n≥8,n∈N*时,
2n
是锐角,an=cos
2n
>0,
∴当n=4时,an有最小值.
故答案为:4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网