题目内容

如图,△ABC是圆的内接三角形,PA切圆于点A,PB交圆于点D.若∠ABC=60°,PD=1,BD=8,则∠PAC=    °,PA=   
【答案】分析:由PDB为圆O的割线,PA为圆的切线,由切割线定理,结合PD=1,BD=8易得PA长,由∠ABC=60°结合弦切角定理易得△PAE为等边三角形,进而根据PE长求出AE长及ED,DB长,再根据相交弦定理可求出CE,进而得到答案.
解答:解:∵PD=1,BD=8,
∴PB=PD+BD=9
由切割线定理得PA2=PD•PB=9
∴PA=3
又∵PE=PA
∴PE=3
又∠PAC=∠ABC=60°
故答案:60,3
点评:本题考查的知识点是与圆相关的比例线段,根据已知条件求出与圆相关线段的长,构造方程组,求出未知线段是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网