题目内容
已知函数{an}满足:a1=2t,t2-2tan-1+an-1an=0,n=2,3,4,…(其中t为常数且t≠0).
(I)求证:数列{
}为等差数列;
(II)求数列{an}的通项公式;
(III)设bn=n•2nan,求数列{bn}的前n项和Sn.
(I)求证:数列{
| 1 |
| an-t |
(II)求数列{an}的通项公式;
(III)设bn=n•2nan,求数列{bn}的前n项和Sn.
(I) 证明:(1)∵t2-2tan-1+an-1an=0,∴(t2-tan-1)-(tan-1-an-1an)=0,即 t(t-an-1)=an-1(t-an).
∵t-an-1≠0,∴
=
,即
=
=
+
,
∴
-
=
(为常数),∴数列{
}为等差数列.
(II)由上可得数列{
}为等差数列.公差为
,∴
=
+(n-1)
=
.
∴an =
+t.
(3)∵bn=n•2nan=(n+1)t2n,
∴sn=t[2×21+3×22+…+(n+1)2n]①.
∴2sn=t[2×22+3×23+…+n 2n+(n+1)2n+1]②.
①-②可得-sn=t[[2×21+22+23+…+2n-(n+1)2n+1]=[2+( 2n+1-2)-(n+1)2n+1]=-n 2n+1,
∴sn=n 2n+1.
∵t-an-1≠0,∴
| 1 |
| an- t |
| an-1 |
| t(an-1-t) |
| 1 |
| an- t |
| an-1-t+t |
| t(an-1-t) |
| 1 |
| t |
| t |
| t(an-1-t) |
∴
| 1 |
| an- t |
| 1 |
| an-1-t |
| 1 |
| t |
| 1 |
| an-t |
(II)由上可得数列{
| 1 |
| an-t |
| 1 |
| t |
| 1 |
| an- t |
| 1 |
| a1- t |
| 1 |
| t |
| n |
| t |
∴an =
| t |
| n |
(3)∵bn=n•2nan=(n+1)t2n,
∴sn=t[2×21+3×22+…+(n+1)2n]①.
∴2sn=t[2×22+3×23+…+n 2n+(n+1)2n+1]②.
①-②可得-sn=t[[2×21+22+23+…+2n-(n+1)2n+1]=[2+( 2n+1-2)-(n+1)2n+1]=-n 2n+1,
∴sn=n 2n+1.
练习册系列答案
相关题目