题目内容
已知椭圆=1(a>b>0)与双曲线=1有相同的焦点,则椭圆的离心率为
D
解析
已知椭圆=1(其中a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.
(1)求的值;
(2)若椭圆的离心率e满足≤e≤,求椭圆长轴的取值范围.
探究:本题涉及直线与椭圆的交点,对于此类问题往往联立它们的方程消去其中的一个未知数,再利用根与系数间的关系,从而得到相应的两个交点的坐标间的关系,再结合题目中的其它条件将问题解决.
已知F1、F2分别为椭圆=1(a>b>0)的左右焦点,经过椭圆上第二象限内任意一点P的切线为l,过原点O作OM∥l交F2P于点M,则|MP|与a、b的关系是( )
A.|MP|=a B.|MP|>a C.|MP|=b D.|MP|<b
A. B. C. D.