题目内容

已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤
1
8
(x+2)2
成立.
(1)证明:f(2)=2;
(2)若f(-2)=0,求f(x)的表达式.
证明:(1)由f(x)≥x得f(2)≥2.…(2分)
因为当x∈(1,3)时,有f(x)≤
1
8
(x+2)2
成立,所以f(2)≤
1
8
(2+2)2
=2.
所以f(2)=2.…(4分)
(2)由
f(2)=2 
f(-2)=0
4a+2b+c=2
4a-2b+c=0

从而有b=
1
2
,c=1-4a.于是f(x)=ax2+
1
2
x+1-4a.…(7分)
f(x)≥x?ax2-
1
2
x+1-4a≥0.
若a=0,则-
1
2
x+1≥0不恒成立.
所以
a>0                        
(-
1
2
)
2
-4a(1-4a)≤0
a>0           
(4a-
1
2
)
2
≤0
解得a=
1
8
.…(11分)
当a=
1
8
时,f(x)=
1
8
x2+
1
2
x+
1
2
=
1
8
(x+2)2

满足f(x)≤
1
8
(x+2)2(x∈(1,  3))
.…(12分)
故f(x)=
1
8
x2+
1
2
x+
1
2
.…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网