题目内容

已知A,B,C是直线l上的不同的三点,O是直线外一点,向量
OA
OB
OC
满足
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
,记y=f(x).
(1)求函数y=f(x)的解析式;
(2)若关于x的方程f(x)=2x+b在[0,1]上恰有两个不同的实根,求实数b的取值范围.
(1)
OA
=(
3
2
x2+1)•
OB
+[ln(2+3x)-y]•
OC

∵A,B,C三点共线,
3
2
x2+1+ln(2+3x)-y=1
y=
3
2
x2+ln(2+3x)

(2)方程f(x)=2x+b即
3
2
x2-2x+ln(2+3x)=b

?(x)=
3
2
x2-2x+ln(2+3x)

?(x)=
3
2+3x
+3x-2=
9x2-1
2+3x
=
(3x+1)(3x-1)
2+3x

x∈(0,
1
3
)
时,φ′(x)<0,φ(x)单调递减,
x∈(
1
3
,1)
时,φ′(x)>0,φ(x)单调递增,
∴φ(x)有极小值为?(
1
3
)
=ln3-
1
2
即为最小值.
又φ(0)=ln2,?(1)=ln5-
1
2
,又ln5-
1
2
-ln2
=ln
5
2
e
=
1
2
ln
25
4e
1
2
ln
25
4×3
>0
∴ln5-
1
2
>ln2.
∴要使原方程在[0,1]上恰有两个不同实根,必须使ln3-
1
2
<b≤
ln2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网