题目内容
设各项为正的数列{an}满足:a1=1,
=
+1,令b1=a1,bn=n2[a1+
+
+…+
](n≥2).
(Ⅰ)求an;
(Ⅱ)求证:(1+
)(1+
)…(1+
)<4(n≥1).
| nan+1 |
| an |
| (n+1)an |
| an+1 |
| 1 |
| a22 |
| 1 |
| a32 |
| 1 |
| an-12 |
(Ⅰ)求an;
(Ⅱ)求证:(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
分析:(Ⅰ)令t=
,则nt=
+1⇒t=
或t=-1(舍去)即
=
,然后利用迭乘法可求出an的值.
(II)根据题目条件可知
=
,然后利用该等下进行化简(1+
)(1+
)…(1+
)=2•
,然后利用放缩法可证得结论.
| an+1 |
| an |
| n+1 |
| t |
| n+1 |
| n |
| an+1 |
| an |
| n+1 |
| n |
(II)根据题目条件可知
| bn+1 |
| bn+1 |
| n2 |
| (n+1)2 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| bn+1 |
| (n+1)2 |
解答:解:(Ⅰ)令t=
,则nt=
+1⇒t=
或t=-1(舍去)即
=
,
∴
=
,
=
,…
=
,
=
将以上各式相乘得:an=n.…(4分)
(Ⅱ)∵bn=n2[a1+
+
+…+
](n≥2).
∴bn=n2[1+
+
+…+
](n≥2).⇒
=1+
+
+…+
,
∴
=1+
+
+…+
+
=
+
∴
=
;…(6分)
当n=1时,1+
=2<4,结论成立;…(7分)
当n≥2时,(1+
)(1+
)…(1+
)=
•
•
…
=
•(
•
…
)bn+1=
(
•
•
…
)bn+1
=2•
…(9分)
∴2[1+
+
+…+
+
]<2[1+
+
+…+
]
=2[1+(1-
)+(
-
)+…+(
-
)]=4-
<4.…(12分)
| an+1 |
| an |
| n+1 |
| t |
| n+1 |
| n |
| an+1 |
| an |
| n+1 |
| n |
∴
| an |
| an-1 |
| n |
| n-1 |
| an-1 |
| an-2 |
| n-1 |
| n-2 |
| a3 |
| a2 |
| 3 |
| 2 |
| a2 |
| a1 |
| 2 |
| 1 |
将以上各式相乘得:an=n.…(4分)
(Ⅱ)∵bn=n2[a1+
| 1 |
| a22 |
| 1 |
| a32 |
| 1 |
| an-12 |
∴bn=n2[1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n-1)2 |
| bn |
| n2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n-1)2 |
∴
| bn+1 |
| (n+1)2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n-1)2 |
| 1 |
| n2 |
| bn |
| n2 |
| 1 |
| n2 |
∴
| bn+1 |
| bn+1 |
| n2 |
| (n+1)2 |
当n=1时,1+
| 1 |
| b1 |
当n≥2时,(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| b1+1 |
| b1 |
| b2+1 |
| b2 |
| b3+1 |
| b3 |
| bn+1 |
| bn |
=
| b1+1 |
| b1b2 |
| b2+1 |
| b3 |
| b3+1 |
| b4 |
| bn+1 |
| bn+1 |
| 1+1 |
| 1×4 |
| 22 |
| 32 |
| 32 |
| 42 |
| 42 |
| 52 |
| n2 |
| (n+1)2 |
=2•
| bn+1 |
| (n+1)2 |
∴2[1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n-1)2 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
=2[1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 4 |
| n |
点评:本题主要考查了等差数列的通项公式,以及利用放缩法证明不等式,属于中档题.
练习册系列答案
相关题目