题目内容

设各项为正的数列{an}满足:a1=1,
nan+1
an
=
(n+1)an
an+1
+1
,令b1=a1bn=n2[a1+
1
a22
+
1
a32
+…
+
1
an-12
](n≥2)

(Ⅰ)求an
(Ⅱ)求证:(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)<4(n≥1)
分析:(Ⅰ)令t=
an+1
an
,则nt=
n+1
t
+1⇒t=
n+1
n
或t=-1(舍去)即
an+1
an
=
n+1
n
,然后利用迭乘法可求出an的值.
(II)根据题目条件可知
bn+1
bn+1
=
n2
(n+1)2
,然后利用该等下进行化简(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
=2•
bn+1
(n+1)2
,然后利用放缩法可证得结论.
解答:解:(Ⅰ)令t=
an+1
an
,则nt=
n+1
t
+1⇒t=
n+1
n
或t=-1(舍去)即
an+1
an
=
n+1
n

an
an-1
=
n
n-1
an-1
an-2
=
n-1
n-2
,…
a3
a2
=
3
2
a2
a1
=
2
1

将以上各式相乘得:an=n.…(4分)
(Ⅱ)∵bn=n2[a1+
1
a22
+
1
a32
+…+
1
an-12
](n≥2)

bn=n2[1+
1
22
+
1
32
+…+
1
(n-1)2
](n≥2)
bn
n2
=1+
1
22
+
1
32
+…+
1
(n-1)2

bn+1
(n+1)2
=1+
1
22
+
1
32
+…+
1
(n-1)2
+
1
n2
=
bn
n2
+
1
n2

bn+1
bn+1
=
n2
(n+1)2
;…(6分)
当n=1时,1+
1
b1
=2<4
,结论成立;…(7分)
当n≥2时,(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)=
b1+1
b1
b2+1
b2
b3+1
b3
bn+1
bn

=
b1+1
b1b2
•(
b2+1
b3
b3+1
b4
bn+1
bn+1
)bn+1
=
1+1
1×4
(
22
32
32
42
42
52
n2
(n+1)2
)bn+1

=2•
bn+1
(n+1)2
…(9分)
2[1+
1
22
+
1
32
+…+
1
(n-1)2
+
1
n2
]<2[1+
1
1×2
+
1
2×3
+…+
1
n(n-1)
]

=2[1+(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n-1
-
1
n
)]
=4-
4
n
<4
.…(12分)
点评:本题主要考查了等差数列的通项公式,以及利用放缩法证明不等式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网