题目内容

已知函数f(x)=
12
ax2-(a+1)x+lnx

(I)当a=2时,求曲线y=f(x)在点(2,f(2))处切线的斜率;
(II)当a>0时,求函数f(x)的单调区间.
分析:(1)由已知中函数f(x)=
1
2
ax2-(a+1)x+lnx
,根据m=1,我们易求出f(1)及f′(1)的值,代入点斜式方程即可得到答案.
(2)由已知我们易求出函数的导函数,令导函数值为0,我们则求出导函数的零点,根据m>0,我们可将函数的定义域分成若干个区间,分别在每个区间上讨论导函数的符号,即可得到函数的单调区间.
解答:解:(1)当a=2时,f(x)=
1
2
ax2-(a+1)x+lnx

f′(x)=2x2-3+
1
x
,故f′(2)=
3
2

所以曲线y=f(x)在点(2,f(2))处的切线的斜率为
3
2

(2)f′(x)=ax2-(a+1)+
1
x

令f′(x)=0,解得x=1,或x=
1
a

因为a>0,x>0.
①当0<a<1时,
若x∈(0,1)时,f′(x)>0,函数f(x)单调递增;
若x∈(1,
1
a
)时,f′(x)0,<函数f(x)单调递减;
若x∈(
1
a
,+∞)时,f′(x)>0,函数f(x)单调递增;
②当a=1时,
若x∈(0,+∞)时,f′(x)>0,函数f(x)单调递增;
③当a>1时,
若x∈(0,
1
a
)时,f′(x)>0,函数f(x)单调递增;
若x∈(
1
a
,1)时,f′(x)0,<函数f(x)单调递减;
若x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增.
点评:本题考查的知识点是利用导数研究函数的单调性,利用导数研究曲线上某点切线方程,其中根据已知函数的解析式求出导函数的解析式是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网