题目内容

如图,CB是⊙O的直径,AP是⊙O的切线,AP与CB的延长线交于点P,A为切点.若PA=10,PB=5,∠BAC的平分线AE与BC和⊙O分别交于点D、E,求AD•AE的值.
分析:先根据∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,进而求出
AB
AC
=
PA
PC
,再根据切割线定理得到PA2=PB•PC;结合前面求出的结论以及勾股定理求出AC=6
5
,AB=3
5
;再结合条件得到△ACE∽△ADB,进而求出结果.
解答:解:连接CE,∵PA为⊙O的切线,
∴∠PAB=∠ACP,…(1分)
又∠P公用,∴△PAB∽△PCA.…(2分)
AB
AC
=
PA
PC
.…(3分)
∵PA为⊙O的切线,PBC是过点O的割线,
∴PA2=PB•PC.…(5分)
又∵PA=10,PB=5,∴PC=20,BC=15.…(6分)
由( I)知,
AB
AC
=
PA
PC
=
1
2

∵BC是⊙O的直径,
∴∠CAB=90°.
∴AC2+AB2=BC2=225,
∴AC=6
5
,AB=3
5
…(7分)
连接CE,则∠ABC=∠E,…(8分)
又∠CAE=∠EAB,
∴△ACE∽△ADB,
AB
AE
=
AD
AC
=…(9分)
∴AD•AE=AB•AC=3
5
×6
5
=90.…(10分)
点评:本题主要考查与圆有关的比例线段、相似三角形的判定及切线性质的应用.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网