题目内容
设O为坐标原点,A(4,a),B(b,8),C(a,b),
(1)若四边形OABC是平行四边形,求∠AOC的大小;
(2)在(1)的条件下,设AB中点为D,OD与AC交于E,求
.
(1)若四边形OABC是平行四边形,求∠AOC的大小;
(2)在(1)的条件下,设AB中点为D,OD与AC交于E,求
| OE |
分析:(1)利用向量相等即可得出;
(2)利用中点坐标公式、向量共线的充要条件即可得出.
(2)利用中点坐标公式、向量共线的充要条件即可得出.
解答:解:(1)由题意得:
=(4,a),
=(b-a,8-b),
∵四边形OABC是平行四边形,∴
=
得
⇒
.
=(4,2),
=(2,6),
•
=8+12=20,
又
•
=|
||
|cos∠AOC=2
×2
×cos∠AOC=20
cos∠AOC
∴cos∠AOC=
.
∵0°<∠AOC<180°,∴∠AOC=45°.
(2)∵为AB中点,∴D的坐标为(5,5),
又由
=λ
,故E的坐标为(5λ,5λ).
∴
=(5λ-2,5λ-6),
=(2,-4)
∵A,E,C三点共线,∴
∥
.
得-4×(5λ-2)=(5λ-6)×2,解得λ=
,从而
=(
,
).
| OA |
| CB |
∵四边形OABC是平行四边形,∴
| OA |
| CB |
|
|
| OA |
| OC |
| OA |
| OC |
又
| OA |
| OC |
| OA |
| OC |
| 5 |
| 10 |
| 2 |
∴cos∠AOC=
| ||
| 2 |
∵0°<∠AOC<180°,∴∠AOC=45°.
(2)∵为AB中点,∴D的坐标为(5,5),
又由
| OE |
| OD |
∴
| CE |
| CA |
∵A,E,C三点共线,∴
| CE |
| CA |
得-4×(5λ-2)=(5λ-6)×2,解得λ=
| 2 |
| 3 |
| OE |
| 10 |
| 3 |
| 10 |
| 3 |
点评:熟练掌握向量相等、中点坐标公式、向量共线的充要条件是解题的关键.
练习册系列答案
相关题目