题目内容

设O为坐标原点,A(4,a),B(b,8),C(a,b),
(1)若四边形OABC是平行四边形,求∠AOC的大小;
(2)在(1)的条件下,设AB中点为D,OD与AC交于E,求
OE
分析:(1)利用向量相等即可得出;
(2)利用中点坐标公式、向量共线的充要条件即可得出.
解答:解:(1)由题意得:
OA
=(4,a),
CB
=(b-a,8-b)

∵四边形OABC是平行四边形,∴
OA
=
CB
b-a=4
8-b=a
a=2
b=6

OA
=(4,2),
OC
=(2,6),
OA
OC
=8+12=20

OA
OC
=|
OA
||
OC
|cos∠AOC=2
5
×2
10
×cos∠AOC=20
2
cos∠AOC

cos∠AOC=
2
2

∵0°<∠AOC<180°,∴∠AOC=45°.
(2)∵为AB中点,∴D的坐标为(5,5),
又由
OE
OD
,故E的坐标为(5λ,5λ).
CE
=(5λ-2,5λ-6),
CA
=(2,-4)

∵A,E,C三点共线,∴
CE
CA

得-4×(5λ-2)=(5λ-6)×2,解得λ=
2
3
,从而
OE
=(
10
3
10
3
)
点评:熟练掌握向量相等、中点坐标公式、向量共线的充要条件是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网