题目内容
已知函数f(x)=cos2(x-
)-sin2x.
(Ⅰ)求f(
)的值;
(Ⅱ)求函数f(x)在x∈[0,
]的最大值.
| π |
| 6 |
(Ⅰ)求f(
| π |
| 12 |
(Ⅱ)求函数f(x)在x∈[0,
| π |
| 2 |
(Ⅰ)∵f(x)=cos2(x-
)-sin2x,
∴f(
)=cos2(-
)-sin2
=cos
=
.…(5分)
(Ⅱ)∵f(x)=cos2(x-
)-sin2x
=
[1+cos(2x-
)]-
(1-cos2x)
=
[cos(2x-
)+cos2x]
=
(
sin2x+
cos2x)
=
sin(2x+
),.…(9分)
∵x∈[0,
],
∴2x+
∈[
,
],
∴当2x+
=
,即x=
时,f(x)取得最大值
.…(12分)
| π |
| 6 |
∴f(
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
| π |
| 6 |
| ||
| 2 |
(Ⅱ)∵f(x)=cos2(x-
| π |
| 6 |
=
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| π |
| 3 |
=
| 1 |
| 2 |
| ||
| 2 |
| 3 |
| 2 |
=
| ||
| 2 |
| π |
| 3 |
∵x∈[0,
| π |
| 2 |
∴2x+
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
∴当2x+
| π |
| 3 |
| π |
| 2 |
| π |
| 12 |
| ||
| 2 |
练习册系列答案
相关题目