题目内容
(2010•成都模拟)在△ABC中,A、B、C为其内角,且tanA与tanB是方程6x2-5x+1=0的两个根.
(I)求tan(A+B)的值;
(II)求函数f(x)=sin(x+
)-2cos2(
+
)+2在x∈[0,π]时的最大值及取得最大值时x的取值.
(I)求tan(A+B)的值;
(II)求函数f(x)=sin(x+
| C |
| 2 |
| x |
| 2 |
| C |
| 4 |
分析:(Ⅰ)由韦达定理可得tanA+tanB=
,tanA•tanB=
,从而可求得tan(A+B)的值;
(Ⅱ)由二倍角的余弦与辅助角公式可将f(x)=sin(x+
)-2cos2(
+
)+2化为:f(x)=
sin(x+
)+1,又0≤x≤π,即可求得其最大值及取得最大值时x的取值.
| 5 |
| 6 |
| 1 |
| 6 |
(Ⅱ)由二倍角的余弦与辅助角公式可将f(x)=sin(x+
| C |
| 2 |
| x |
| 2 |
| C |
| 4 |
| 2 |
| π |
| 8 |
解答:解:(Ⅰ)由韦达定理得:tanA+tanB=
,tanA•tanB=
,
∴tan(A+B)=
=1;
(Ⅱ)由(Ⅰ)知A+B=
,又A+B+C=π,
∴C=
.
∴f(x)=sin(x+
)-2cos2(
+
)+2
=sin(x+
)-[1+cos(x+
)]+2
=
sin(x+
-
)+1
=
sin(x+
)+1.
∵0≤x≤π,故
≤x+
≤
,
∴当x+
=
,即x=
时,f(x)的最大值为
+1.
| 5 |
| 6 |
| 1 |
| 6 |
∴tan(A+B)=
| tanA+tanB |
| 1-tanA•tanB |
(Ⅱ)由(Ⅰ)知A+B=
| π |
| 4 |
∴C=
| 3π |
| 4 |
∴f(x)=sin(x+
| C |
| 2 |
| x |
| 2 |
| C |
| 4 |
=sin(x+
| C |
| 2 |
| C |
| 2 |
=
| 2 |
| C |
| 2 |
| π |
| 4 |
=
| 2 |
| π |
| 8 |
∵0≤x≤π,故
| π |
| 8 |
| π |
| 8 |
| 9π |
| 8 |
∴当x+
| π |
| 8 |
| π |
| 2 |
| 3π |
| 8 |
| 2 |
点评:本题考查正弦函数的定义域和值域,着重考查降幂公式与辅助角公式及正弦函数的性质,属于中档题.
练习册系列答案
相关题目