题目内容
已知数列{an}的前n项和为Sn,且Sn=n2.数列{bn}为等比数列,且b1=1,b4=8.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若数列{cn}满足cn=abn,求数列{cn}的前n项和Tn,并证明Tn≥1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若数列{cn}满足cn=abn,求数列{cn}的前n项和Tn,并证明Tn≥1.
(Ⅰ)∵数列{an}的前n项和为Sn,且Sn=n2,
∴当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1.
当n=1时,a1=S1=1亦满足上式,故an=2n-1,(n∈N*).
数列{bn}为等比数列,设公比为q,
∵b1=1,b4=b1q3=8,∴q=2.
∴bn=2n-1(n∈N*).
(Ⅱ)证明:cn=abn=2bn-1=2n-1.
∴Tn=c1+c2+c3+…cn=(21-1)+(22-1)+…+(2n-1)=(21+22+…2n)-n=
-n
∴Tn=2n+1-2-n.
∵Tn-Tn-1=2n-1>0,∴Tn>Tn-1,∴Tn>Tn-1>…>T1=1.
∴Tn≥1.
∴当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1.
当n=1时,a1=S1=1亦满足上式,故an=2n-1,(n∈N*).
数列{bn}为等比数列,设公比为q,
∵b1=1,b4=b1q3=8,∴q=2.
∴bn=2n-1(n∈N*).
(Ⅱ)证明:cn=abn=2bn-1=2n-1.
∴Tn=c1+c2+c3+…cn=(21-1)+(22-1)+…+(2n-1)=(21+22+…2n)-n=
| 2(1-2n) |
| 1-2 |
∴Tn=2n+1-2-n.
∵Tn-Tn-1=2n-1>0,∴Tn>Tn-1,∴Tn>Tn-1>…>T1=1.
∴Tn≥1.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |