题目内容

设函数f:R→R,满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=______.
令x=y=0,得,f(1)=1-1-0+2,
所以f(1)=2.
令y=1,得f(x+1)=2f(x)-2-x+2,
即f(x+1)=2f(x)-x.①
又f(yx+1)=f(y)f(x)-f(x)-y+2,
令y=1代入,得f(x+1)=2f(x)-f(x)-1+2,
即f(x+1)=f(x)+1.②
联立①、②得:f(x)=x+1
故答案为f(x)=x+1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网