题目内容

如下图,水渠横断面为等腰梯形,水的横断面面积为S,水面的高为h,问侧面与地面成多大角度时,才能使横断面被水浸湿的长度为最小?

解:设浸湿的长度为l,AB=CD=x.

则l=BC+2x=-xcosθ+2x=+(2-cosθ)·x=+(2-cosθ)·.

∴l′=h·.

令l′=0,即h·=0,解得cosθ=,∴θ=60°.

∵l只有一个极值,

∴它是最小值.将θ=60°代入l=+(2-cosθ)·,

解得lmin=+h.

∴当侧面与地面成60°时,才能使横断面被水浸湿的长度为最小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网